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Abstract

Modern high energy physics experiments have to process terabytes of input data produced in particle collisions. The core of many data recon-
struction algorithms in high energy physics is the Kalman filter. Therefore, the speed of Kalman filter based algorithms is of crucial importance
in on-line data processing. This is especially true for the combinatorial track finding stage where the Kalman filter based track fit is used very
intensively. Therefore, developing fast reconstruction algorithms, which use maximum available power of processors, is important, in particular
for the initial selection of events which carry signals of interesting physics.

One of such powerful feature supported by almost all up-to-date PC processors is a SIMD instruction set, which allows packing several
data items in one register and to operate on all of them, thus achieving more operations per clock cycle. The novel Cell processor extends the
parallelization further by combining a general-purpose PowerPC processor core with eight streamlined coprocessing elements which greatly
accelerate vector processing applications.

In the investigation described here, after a significant memory optimization and a comprehensive numerical analysis, the Kalman filter based
track fitting algorithm of the CBM experiment has been vectorized using inline operator overloading. Thus the algorithm continues to be flexible
with respect to any CPU family used for data reconstruction.

Because of all these changes the SIMDized Kalman filter based track fitting algorithm takes 1 µs per track that is 10000 times faster than the
initial version. Porting the algorithm to a Cell Blade computer gives another factor of 10 of the speedup.

Finally, we compare performance of the tracking algorithm running on three different CPU architectures: Intel Xeon, AMD Opteron and Cell
Broadband Engine.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Finding particle trajectories is usually the most time con-
suming part of modern experiments in high energy physics [1].
In many present experiments with high track densities and com-
plicated event topologies a Kalman filter [1,2] based track fit is
used already at this combinatorial part of the event reconstruc-
tion. Therefore speed of the track fitting algorithm becomes
very important for the total processing time.
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0010-4655/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
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CBM [3] is a dedicated heavy-ion experiment with fixed tar-
get to investigate the properties of highly compressed baryonic
matter as it is produced in nucleus-nucleus collisions at the Fa-
cility for Antiproton and Ion Research (FAIR) in Darmstadt,
Germany. Large track densities (on average 500 tracks in the
main tracker for a typical central Au + Au collision) together
with the presence of a non-homogeneous magnetic field make
the reconstruction of events challenging. The track reconstruc-
tion procedure in the CBM experiment is based on the cellular
automaton track finder and the Kalman filter track fitter [4,5].
To achieve a high track finding efficiency the Kalman filter fit-
ting algorithm is intensively used within the track finder.
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Motivated by the idea of using the SIMD unit of modern
processors (e.g., [6]), we have investigated here a chain of mod-
ifications of the Kalman filter based track fitting algorithm in
order to increase the speed of the track finding stage of the event
reconstruction. In the CBM experiment the track fitting algo-
rithm based on the conventional Kalman filter is implemented
using scalar instructions. Thus we have started with the double
precision scalar version of the conventional Kalman filter based
track fitting algorithm.

The algorithm uses the 70 MB large map of the magnetic
field and, therefore, permanently accesses the main memory
which is slow relative to the cache. But similar to other high
energy physics experiments, the non-homogeneous magnetic
field of the CBM experiment is smooth enough to be locally ap-
proximated by a polynomial of fourth order. In the case of the
polynomial approximation of the magnetic field the algorithm
operates within the cache which results in a significant increase
of the speed without degradation of the tracking precision.

In order to further optimize memory usage, precision of all
data in the algorithm has been changed from double to single.
As a result, twice more data can be stored in the cache and, as
well, twice more data can be later packed into a SIMD register,
effectively doubling the throughput. The conventional Kalman
filter algorithm exhibits an unstable behavior when using only
single precision numbers (see also [7,8]). Therefore the Kalman
filter algorithm has been specially investigated and modified in
order to avoid such instability due to roundoff errors. In addi-
tion, the algorithm has been mathematically and numerically
optimized, especially in the parts of initial track parameters es-
timation and also propagation in the magnetic field [5].

In a next step, the algorithm has been adapted for use
of a SIMD instruction set. The adaptation has been done by
inline operator overloading. This keeps the source code of
the algorithm unchanged. Therefore, both versions, scalar and
SIMDized, are equivalent and can be selected by a compile
time option. Furthermore, this approach gives a unified way of
dealing with different CPU families which implement different
SIMD instruction sets.

Finally, the SIMDized version of the algorithm has been
ported to the Cell processor [9,10]. Initially designed for a
game console, the Cell processor promises extremely high com-
puting capabilities. The Cell processor consists of a general-
purpose PowerPC processor core (PPE) connected to eight
special-purpose streamlined coprocessing synergistic process-
ing elements (SPE), which greatly accelerate multimedia and
vector processing applications, as well as many other forms of
dedicated computation. Cell combines the considerable floating
point resources required for demanding numerical algorithms
with a power efficient software-controlled memory hierarchy.
The current implementation of Cell is most often noted for its
extremely high performance single precision arithmetic. Even
though single precision is widely considered insufficient for
many scientific applications, it is fully adequate for the refor-
mulated Kalman algorithm. The Cell processor is particularly
compelling because it is expected to be produced in high vol-
umes and to be cost competitive with commodity PC CPUs.
Using the IBM Cell Broadband Engine SDK [9,10], the al-
gorithm has been first ported to the PPE and modified for use of
the AltiVec vector instructions [11], and then ported to the SPE
with the corresponding SPE specific vector instructions. After
extensive tests on a Cell simulator, the algorithm has been run
on a Cell Blade computer.

In the end, the performance of the SIMDized version of
the Kalman filter based track fitting routine has been evaluated
on three different computer architectures: Intel Xeon, AMD
Opteron and Cell Broadband Engine.

2. SIMD architecture

There are three important classes of computer architectures
based upon the number of concurrent instruction and data
streams:

• Single instruction, single data stream (SISD)—a single in-
struction stream on scalar data.

• Single instruction, multiple data streams (SIMD)—multiple
data streams against a single instruction stream to perform
operations which may be naturally parallelized.

• Multiple instruction, multiple data (MIMD)—many func-
tional units perform different operations on different data.

The basic data unit of SIMD is the vector, which is why
SIMD computing is also known as vector processing. These
vectors are represented in a packed data format. Data is grouped
into bytes or words, and packed into a vector to be operated on.
One of the biggest issues in designing a SIMD implementation
is how many data elements will it be able to operate on in par-
allel. For instance, using a 4-element, 128-bit vector one can do
four-way single-precision (32-bit) floating-point calculations in
parallel (see Fig. 1).

Today SIMD instructions can be found on most CPUs, in-
cluding the PowerPC’s AltiVec [11] and Intel’s MMX, SSE,
SSE2, SSE3 and SSE4 [6]:

• AltiVec is a floating point and integer SIMD instruction set
designed by Apple Computer, IBM and Motorola, and im-
plemented on the PowerPC processors.

• MMX (MultiMedia eXtension) is a SIMD instruction set
designed by Intel, introduced in 1997 in their Pentium

Fig. 1. Four concurrent add operations [10].
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MMX microprocessors. MMX added 8 new registers to the
architecture. Each of the MMX registers are 64-bit integers.

• SSE (Streaming SIMD Extensions) has been introduced in
1999 in the Pentium III processors. SSE adds 8 new 128-bit
registers known as XMM registers. Each register packs to-
gether four 32-bit single-precision floating point numbers.

• Introduced with the Pentium 4, SSE2 adds new math in-
structions for double-precision (64-bit) floating point and
8/16/32-bit integer data types, all operating on the same
128-bit XMM registers. SSE2 enables the programmer to
perform SIMD math of virtually any type (from 8-bit inte-
ger to 64-bit float) entirely with the XMM registers.

• SSE3 is an incremental upgrade to SSE2, adding DSP-
oriented math instructions like addition and subtraction of
multiple values stored within a single vector register.

• SSE4 is the fourth iteration of the SSE instruction set de-
veloped for the Intel Core microarchitecture.

Both AltiVec and SSE feature 128-bit vector registers that
can represent:

• sixteen 8-bit signed or unsigned chars,
• eight 16-bit signed or unsigned shorts,
• four 32-bit integers, or
• four 32-bit floating point variables.

Both provide cache-control instructions intended to minimize
cache pollution when working on streams of data.

They also exhibit important differences. Unlike SSE2, Alti-
Vec:

• does not operate on 64-bit double precision floats;
• there is no way to move data directly between scalar and

vector registers: the vector registers, like the scalar regis-
ters, can only be loaded from and stored to memory.

However, AltiVec:

• provides a much more complete set of “horizontal” opera-
tions that work across all the elements of a vector;

• is also unique in its support for a flexible vector permute in-
struction, in which each byte of a resulting vector value can
be taken from any byte of either of two other vectors, para-
metrized by yet another vector, that allows for sophisticated
manipulations in a single instruction;

• the allowable combinations of data type and operations are
much more complete;

• 32 128-bit vector registers are provided, compared to 8 for
SSE and SSE2;

• most AltiVec instructions take three register operands com-
pared to only two register/register or register/memory
operands on IA-32.

Both AltiVec and SSE instruction sets aim the same purpose,
but having many shared features are implemented in different
ways. Therefore programming common for both platforms is
possible, but must be done carefully using matching instruc-
tions and constructing equivalent blocks of instructions from
both instruction sets.

3. Cell Broadband Engine

Cell1 [9,10] is a microprocessor architecture jointly devel-
oped by a Sony, Toshiba, and IBM alliance known as STI. Cell
combines a general-purpose Power-architecture core of modest
performance with multiple streamlined coprocessing elements
which greatly accelerate multimedia and vector processing ap-
plications, as well as many other forms of dedicated compu-
tation. The resulting architecture emphasizes efficiency/watt,
prioritizes bandwidth over latency, and favors peak computa-
tional throughput over simplicity of program code. For these
reasons, Cell is widely regarded as a challenging environment
for software development. The major commercial application of
Cell is in Sony’s PlayStation 3 game console. Although the Cell
Broadband Engine is initially intended for application in game
consoles and media-rich consumer-electronics devices such as
high-definition televisions, the architecture and the Cell Broad-
band Engine implementation have been designed to enable fun-
damental advances in processor performance.

The Cell Broadband Engine (Fig. 2) is a single-chip multi-
processor with nine processors operating on a shared, coherent
memory. The Cell processor can be split into four components:

• the main processor called the Power Processing Element
(PPE) (a two-way SMT multithreaded Power 970 architec-
ture compliant core),

• eight fully-functional co-processors called the Synergystic
Processing Elements (SPEs),

• a specialized high-bandwidth circular data bus connecting
the PPE, input/output elements and the SPEs, called the El-
ement Interconnect Bus (EIB),

• external input and output structures.

The first type of processor, the PPE, is not intended to per-
form all primary processing for the system, but rather to act
as a controller for the other eight SPEs, which handle most
of the computational workload. The second type of processor,
the SPE, has RISC architecture with a fixed-width 32-bit in-
struction format. It is optimized for running compute-intensive
applications, and it is not optimized for running an operating
system. In one typical usage scenario, the system will load the
SPEs with small programs, chaining the SPEs together to han-
dle each step in a complex operation. Another possibility is to
partition the input data set and have several SPEs performing
the same kind of operation in parallel.

The PPE, is a 64-bit PowerPC Architecture core. It is fully
compliant with the 64-bit PowerPC Architecture and can run
32-bit and 64-bit operating systems and applications. The PPE
contains a 64-bit general purpose register set, a 64-bit floating
point register set, and a 128-bit VMX (AltiVec) register set. The

1 Cell is a shorthand for Cell Broadband Engine Architecture, commonly ab-
breviated CBEA in full or Cell BE in part.
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Fig. 2. Cell Broadband Engine overview [10].
PPE contains a 16 kB instruction and data Level 1 cache and a
512 kB Level 2 cache.

The SPEs are independent processors, each running its own
individual application programs. They are designed to be pro-
grammed in high-level languages and support a rich instruction
set that includes extensive SIMD functionality. The SPE is a
RISC processor with 128-bit SIMD organization for single and
double precision instructions. The SPE contains a 128 × 128
register file. The SPE can be used for scalar data types ranging
from 8-bits to 128-bits in size or for SIMD computations on a
variety of integer and floating point formats: 16 8-bit integers, 8
16-bit integers, 4 32-bit integers, or 4 single precision floating-
point numbers in a single clock cycle. The SPEs are capable of
performing double precision calculations, albeit with an order
of magnitude performance penalty. Each SPE has full access
to coherent shared memory, including the memory-mapped I/O
space. Each SPE is composed of a Streaming Processing Unit
(SPU), and a Memory Flow Controller (MFC) unit (DMA,
MMU, and bus interface). With the current generation of the
Cell, each SPE contains a 256 kB instruction and data local
memory area, called Local Store (LS), which is visible to the
PPE and can be addressed directly by software. The local store
does not operate like a conventional CPU cache since it is nei-
ther transparent to software nor does it contain hardware struc-
tures that predict what data to load.

A significant difference between the SPEs and the PPE is
how they access memory. The PPE accesses main storage (the
effective-address space that includes main memory) with load
and store instructions that go between a private register file and
main storage (which may be cached). However, the SPEs access
main storage with direct memory access (DMA) commands that
go between main storage and a private local memory used to
store both instructions and data. SPE’s fetch, load and store
instructions access this private local store, rather than shared
main storage. This 3-level organization of storage (register file,
local store, main storage), with asynchronous DMA transfers
between local store and main storage, is a radical break with
conventional architecture and programming models, because it
explicitly parallelizes computation and the transfers of data and
instructions.

At 3.2 GHz, each SPE gives a theoretical 25.6 GFLOPS of
single precision performance. The PPE’s VMX (AltiVec) unit is
fully pipelined for double precision floating point and can com-
plete two double precision operations per clock cycle, which
translates to 6.4 GFLOPS at 3.2 GHz; or eight single precision
operations per clock cycle, which translates to 25.6 GFLOPS at
3.2 GHz. IBM already presented a blade server prototype based
on two Cell processors, running the 2.6.11 Linux kernel. The
processors run at 2.4–2.8 GHz. IBM expects soon to run them
at 3.0 GHz, providing 200 GFLOPS single-precision floating
point performance per CPU (or 400 GFLOPS per board). IBM
also expects to arrange seven blades in a single Rackmount
chassis (similar to their BladeCenter product line) for a total
performance of 2.8 TFLOPS (or 284 GFLOPS in double pre-
cision) per chassis. It will also become available in a blade
configuration from Mercury Computer Systems, which has re-
leased preproduction blades with cell microprocessors that are
currently shipping.

Software adoption remains a key issue in whether Cell ul-
timately delivers on its performance potential. IBM provides a
comprehensive Linux-based Cell development platform to as-
sist developers in confronting these challenges.

4. Kalman filter method

The Kalman filter method [1,2] is intended for finding the
optimum estimation r of an unknown vector rt according to the
measurements mk , k = 1 . . . n, of the vector rt .

The Kalman filter starts with a certain initial approximation
r = r0 and refines the vector r, consecutively adding one mea-
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Fig. 3. Block diagram representation of the conventional Kalman filter.

surement after the other. The optimum value is attained after
the addition of the last measurement.

The vector rt can change from one measurement to the next:

(1)rt
k = Akrt

k−1 + νk,

where Ak—a linear operator, νk—a process noise between (k−
1)th and kth measurements.

The measurement mk linearly depends on rt
k :

(2)mk = Hkrt
k + ηk,

where ηk—an error of the kth measurement.
It is assumed that measurement errors ηi and the process

noise νj are uncorrelated, unbiased (〈ηi〉 = 〈νj 〉 = 0) and those
covariance matrices Vk , Qk are known:

(3)
〈
ηi · ηT

i

〉 ≡ Vi,
〈
νj · νT

j

〉 ≡ Qj .

The Kalman filter starts with an initial vector r0, then for
each measurement mk a vector rk is calculated, which is the
optimum estimation of the vector rt according to the first k

measurements.
The conventional Kalman filter algorithm consists of four

stages (see also a block diagram in Fig. 3):

1. Initialization step. Choose an approximate value of the vec-
tor r0. Its covariance matrix is set to C0 = I · inf2, where inf
denotes a large positive number.

2. Prediction step.

(4)r̃k = Akrk−1, C̃k = AkCk−1A
T
k .
3. Process noise. In contrast to the prediction step, describing
deterministic changes of the vector rt in time, the process
noise describes probabilistic deviations of the vector rt :

(5)r̂k = r̃k, Ĉk = C̃k + Qk.

4. Filtration step. At this step the state vector r̂k is updated
with the new measurement mk to get the optimal estimate
of rk and its covariance matrix Ck :

Kk = ĈkH
T
k

(
Vk + HkĈkH

T
k

)−1
,

rk = r̂k + Kk(mk − Hk r̂k),

Ck = Ĉk − KkHkĈk,

χ2
k = χ2

k−1 + (mk − Hk r̂k)
T(

Vk + HkĈkH
T
k

)−1

(6)× (mk − Hk r̂k).

The following designations are used in Eqs. (4)–(6): rk−1,
Ck−1—the optimum estimation, obtained at the previous step
and the error covariance matrix; the matrix Ak relates the state
at step k − 1 to the state at step k; r̃k , C̃k—predicted estimation
of rt

k before the process noise; r̂k , Ĉk—predicted estimation
of rt

k after the process noise; mk , Vk—the kth measurement and
its covariance matrix; the matrix Hk—the model of measure-
ment; the matrix Kk is the so-called gain matrix; the value χ2

k

is the total χ2-deviation of the obtained estimation rk from the
measurements m1, . . . ,mk .

The vector rn obtained after the filtration of the last mea-
surement is the desired optimal estimation of the rt

n with the
covariance matrix Cn.

In track fitting applications, the state vector rk is vector of
the track parameters, the prediction matrix Ak describes extrap-
olation of the track in the magnetic field from one detector to
another, and the matrix of noise Qk describes the effect of mul-
tiple scattering in the material.

5. Speedup of the algorithm

The Kalman filter method is used both in the track finding
and track fitting routines of the CBM experiment. The track
finder is based on the cellular automaton method [4]. The algo-
rithm creates short track segments (triplets) locally in neigh-
boring detector planes and links them into track candidates,
which are then selected using the χ2-criterion. The Kalman
filter based routines are used at all stages of the track finder
in order to reliably estimate parameters of the track segments
and quality of the track candidates. The track fitting routine
in the CBM experiment realizes the Kalman filter in its con-
ventional approach and includes all necessary implementations
of the Kalman filter method, like extrapolation, update and
smoother. All variables in the routine are scalars and most of
them have floating point representation in double precision.
The track fitting routine performs three iterations in order to
achieve maximum momentum resolution and to take accurately
into account multiple scattering in material of the detectors. As
in the track fitter the Kalman filter is more isolated compar-
ing to the track finder, we have chosen the Kalman filter based
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Fig. 4. The most significant (By ) component of the active magnetic field in the middle of the detector system (z = 50 cm) calculated using the polynomial
approximation (left) and difference between two alternative field representations (right).
track fitting procedure for investigation of its vectorization abil-
ity and further implementation in the Cell processor. Collecting
of measurements into tracks has been done based on the Monte-
Carlo information requiring for hits in a track to have the same
particle ID. Thus the problem becomes well localized for fur-
ther analysis.

For these studies central Au + Au collisions at 35 AGeV
have been simulated. In the simulations we used the main track-
ing detector of 7 silicon pixel stations positioned at 10, 20, 30,
40, 60, 80 and 100 cm from the target. The first 2 stations have
thickness of 150 µm, while others—400 µm. All detectors have
idealized response (no fake hits, efficiency losses, pile-up, etc.).
The non-homogeneous active magnetic field has been used to
trace particles through the detector.

At the first stage we have optimized memory access in the
algorithm. The magnetic field of the CBM experiment is non-
homogeneous and stored in a 70 MB large map, thus requiring
permanent access to the main memory. It is obvious, that run-
ning on a conventional computer performance of an algorithm
with data located in the main memory is significantly slower
comparing to that working within the cache. This is especially
true for the Cell processor with the size of the local store of
SPEs comparable with the cache size, where unpredictable ac-
cess to the magnetic field map in the main memory of PPE is a
blocking process which stalls the algorithm. But the magnetic
field of the CBM experiment is relatively smooth and, there-
fore, can be locally approximated by polynomials. It was found
to be sufficient for the propagation step in the Kalman filter to
use a polynomial of fourth order to approximate the field in
planes of each station (see Fig. 4 for comparison of two alter-
native field representations). Field behavior between stations is
approximated by a parabola with coefficients calculated from
three closest hits of the current track, since we need the field
only along the track to be fitted [5]. Track parameters taken
with the polynomial approximation of the magnetic field are as
precise as those calculated using the full magnetic field map,
showing there is no degradation.

At the second stage, the fitting algorithm has been signif-
icantly modified in two directions: changing precision of the
variables in the algorithm from double to single and computa-
tionally optimal implementation of the Kalman filter method.
Usually, the conventional Kalman filter requires calculations
with double precision [1]. On the other hand, operating with
data in single precision has several advantages. Using single
precision reduces twice the size of data and, therefore, size of
required memory to store it. In this case, more data can be read
into cache of a conventional CPU or into local store of SPE that
results in faster performance of the algorithm. In addition, twice
more data with single precision can be later packed into a vector
thus automatically doubling the speed of the SIMDized algo-
rithm. Moreover, the current implementation of the Cell proces-
sor is optimal for SIMD operations with single precision, but
is an order of magnitude slower performing double precision
calculations. Changing precision of all floating point variables
from double to single precision, we have realized that 32 bits
of single precision is not enough for the conventional Kalman
filter to be numerically stable. It produces results, which are
completely unacceptable not only due to poorer quality of the
track parameters, but also because of bad numerical properties
of the covariance matrix, like negative diagonal elements. It is
possible to keep several variables (like the covariance matrix)
in double precision and also process some critical calculations
in double precision, but having a significant extra charge for
operations in double precision on SPE, we have decided to
rewrite the entire algorithm in single precision. Therefore, a nu-
merically stable and accurate single precision approach of the
Kalman filter was necessary. There are several methods to keep
the Kalman filter stable and accurate in single precision [7]. One
of the best is the square root implementation of the Kalman fil-
ter [7,8,12,13], where calculations are performed on square root
of the covariance matrix (Ck ≡ SkS

T
k ). Although equivalent al-

gebraically to the conventional approach, the square root filter
exhibits improved numerical characteristics, particularly in ill-
conditioned problems. The square root filter provides in single
precision the same accuracy as the conventional Kalman filter
in double precision. The square root filter has additional trans-
formations compared to the conventional approach and there-
fore requires about 30% more processing time. Such additional
overhead is usually considered as acceptable for the benefit of
improved numerical stability. But in the tracking application of
the Kalman filter, a comprehensive analysis has shown, that the
only source of instability is filtration of the first measurements,
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Table 1
Timing (in %) for different steps of the Kalman filter based fitting routine

Step Description Timing, %

1 Initialization 11
2 Prediction 45
3 Process noise 8
4 Filtration 36

where errors of the initial track parameters can be a few orders
of magnitude larger than errors of the measurements, thus caus-
ing significant roundoff errors (see Eqs. (6)) and, therefore, loss
of precision of the method. We have found that the direct com-
parison of the errors before the filtration step and neglecting the
errors which are more than 4 times larger than the mean mea-
surement error keeps the algorithm stable and accurate in single
precision without any extra calculations like in the square root
approach.

In addition, the Kalman filter algorithm has been mathemat-
ically optimized. Usually it starts with arbitrary initial track
parameters and a large covariance matrix, and then repeats few
iterations in order to converge to an optimum solution. In our
case the initial track parameters are directly estimated from
the input data, thus only one iteration of the Kalman proce-
dure is necessary. Furthermore, as a result of the polynomial
approximation of the magnetic field, the propagation step of
the Kalman filter can be performed directly from measurement
to measurement without necessity of additional intermediate
steps. Other optimizations have been also implemented, like
replacement of matrix multiplications by direct operations on
only non-trivial matrix elements. The algorithm has been also
extensively analyzed with respect to its numerical optimiza-
tion, for instance: most of loops have been unrolled in order to
provide additional instructions for interleaving; most branches
have been eliminated from the algorithm to avoid branch mis-
prediction penalty; calculations have been reordered for better
use of the processor pipeline.

Table 1 gives relative timing for different steps (see Eqs. (4)–
(6) and Fig. 3) of the Kalman filter based fitting routine. One
can see that even without reading the magnetic field map the
propagation of the track parameters (the prediction step) is still
the most time consuming part of the fitting procedure because
of complexity of the propagation in a non-homogeneous mag-
netic field.

At the third stage the tracking data has been vectorized. As
all tracks are independent and fitted by the same algorithm, one
can fit them in parallel after packing the corresponding track
parameters of each four consecutive tracks into vectors. They
are packed such that, for instance, x-coordinates of four tracks
are represented as vector of four elements (xi, xi+1, xi+2, xi+3).
Thus data processing remains identical both for scalar and vec-
tor representations.

Then, the track fitting algorithm written in C++ language
has been vectorized at first in order to use the SSE2 instruc-
tion set. The problem is that the vector instructions look com-
pletely different from the corresponding scalar instructions:
for instance, the scalar operation c = a + b becomes c =
vec_add(a, b). Rewriting the code using vector instruc-
tions would require in the future to provide support for both,
scalar and vector, versions, duplicating modifications in both
versions and initiating another loop of debugging and testing.
Therefore, we have decided to implement the SSE2 vector in-
struction set in a header file, overloading all operands and in-
lining several functions.2 In this way the source code remains
untouched, and possible changes of the code in the future will
be valid for both, scalar and vector, versions. Quality of the
track parameters and the covariance matrix of the SIMDized
version of the track fit has been shown to be the same as in the
scalar version.

At the fourth stage the algorithm has been ported into the
Cell simulator and run on the PPE. For that we have installed
the Red Hat Linux (Fedora Core 4), the only Linux version
which is supported by the Cell simulator at the time of the in-
vestigation. Implementing the AltiVec instruction set of the PPE
in another header was relatively easy because of similarity be-
tween SSE2 and AltiVec. It was still possible to run both, scalar
and vector, versions also on the PPE, thus examining consis-
tency of results.

The last step was porting the code into the SPE. Again, this
has been done by writing another header, which implements
the specialized SIMD instruction set of the SPE. In addition,
we have slightly modified the code in order to provide commu-
nication between the PPE and the SPE and to exchange data
between the main memory and the local store of the SPE. The
total size of SPE code is only 50 kB, which fits very well into
the local store of the SPE, leaving the remaining 200 kB for
data.

The SPU statistics of the Cell simulator is given in Fig. 5. It
shows that the algorithm achieves a very good overall cycles per
instruction (CPI) performance of 1.03. It has 15.5% dual-issue
(odd and even pipeline use) rates, almost no stall due to branch
miss (1.9%) and low dependency stalls (19.3%) that is good for
such complicated algorithm. In addition, all 128 registers have
been used.

After extensive tests on the simulator the algorithm has been
run on a Dual Cell-Based Blade computer running at 2.4 GHz.
There were no significant problems observed at this step.

At the last stage all 16 SPEs of the two Cell processors avail-
able on the Cell Blade have been running in parallel to process
different data samples.

6. Results and discussion

The Kalman filter based track fitting algorithm has been
tested on simulated data of the CBM experiment [3,4].

In the CBM experiment with forward geometry the natural
choice of the state vector3 is:

(7)r = {x, y, tx, ty, q/p} ,

2 In case no SIMD instruction set is supported by a computer, the vector type
is substituted by the pseudo-vector array of four scalars.

3 The z-coordinate points downstream the spectrometer axis, and x and y are
transverse coordinates.
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Fig. 5. A dynamic timing analysis of the SPE using the IBM Full System Sim-
ulator for the Cell Broadband Engine.

where x and y are track coordinates at the reference z-plane,
tx = tan θx is the track slope in the xz plane, ty = tan θy is the
track slope in the yz plane, q/p is the inverse particle momen-
tum, signed according to charge.

Quality of the track parameters has been monitored at all
stages of the speedup of the algorithm. Fig. 6 shows residuals
and normalized residuals (pulls) of the track parameters at the
production vertex obtained on a Cell Blade computer.

Errors (residuals) ρ of the track parameters, for instance, of
the x-coordinate, are determined as:

(8)ρx = xreco − xmc,

where xreco—reconstructed and xmc—true Monte-Carlo values
of the x-coordinate.

A measure of the reliability of the fit are the normalized
residual (pull) distributions of the fitted track parameters. Nor-
malized residuals are determined according to the formula:

(9)P(x) = ρx√
Cxx

,

where Cxx—the corresponding diagonal element of the covari-
ance matrix, obtained in the track fit. In the ideal case the
normalized error distributions of coordinates and slopes of the
track should be unbiased and Gaussian distributed with width
of 1.0.

Fig. 6 gives also the RMS of the Gaussian fits to the residual
and normalized residual distributions at the production vertex.
The reconstructed track parameters and covariance matrix at the
vertex where the track originates are obtained by propagating
the track parameters at the measurement position closest to the
vertex, taking into account the remaining material traversed. All
pulls are centered at zero indicating that there is no systematic
shift in the reconstructed track parameter values. The pull dis-
tributions are well fitted using Gaussian functions with small
tails caused by the various non-Gaussian contributions to the fit.
The q/p pull shows slightly underestimated errors. This can be
a result of several approximations made in the fitting procedure
mainly in the part of material treatment.

Table 2 summarizes all stages and gives timing analysis and
speedup after each stage of the development. One can see, that
elimination of the magnetic field map and, as a result, no need
to access the main memory increase the speed of the algorithm
up to 50 times. Optimization of the algorithm resulted in the 35
times faster performance. The vectorization stage, in contrast
to clear software improvements at the first two stages, required
both software and hardware changes giving 4.5 times speedup.
Porting to SPE resulted in 1.5 increase of the speed with respect
to a Pentium 4 processor used at the previous stages, proba-
bly because of increased number of registers. The last stage
is another hardware improvement due to use of all 16 SPEs
of the Cell Blade computer and, because of such simple par-
allelization as in the case of track fitting, gives another 10 times
speedup. In total the speed of the algorithm had been increased
in 120,000 times.

In addition, we have compared the timing performance of
the SIMDized version of the Kalman filter based track fitting
routine on three different computers based on:

• 2 Intel Xeon Processors with Hyper-Threading enabled and
512 kB cache at 2.66 GHz4;

• 2 Dual Core AMD Opteron Processors 265 with 1024 kB
cache at 1.8 GHz5;

• 2 Cell Broadband Engines with 256 kB local store at 2.4
GHz.6

Both, Intel and AMD based, personal computers are treated by
the operating system as having 4 processors each.

Table 3 gives a real time performance for fitting a single
track on different computers. Only one processing unit (CPU or
SPU) is active, while others are in the idle state or running the
operating system. Since only one track of about 0.5 kB size is
fitted, all computations are located within the cache or the local
memory. The Cell Blade computer has the fastest performance
requiring only half the clock cycles per track when compared
to the Intel Xeon based computer.

Fig. 7 gives real time per track for the SIMDized version
of the Kalman filter fitting routine for the Intel Xeon, AMD
Opteron and Cell based computers running different number of
processes in parallel. A very large sample of tracks exceeding
many times the size of the cache or the local store has been
processed in order to include the effect of communication to

4 lxg1411 at the Gesellschaft für Schwerionenforschung mbH, 64291
Darmstadt, Germany.

5 eh102 at the Kirchhoff Institute for Physics, University of Heidelberg,
69120 Heidelberg, Germany.

6 blade11bc4 at the IBM Laboratory Böblingen, Schönaicher Str. 220,
71032 Böblingen, Germany.
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Fig. 6. Residuals and normalized residuals (pulls) of the estimated track parameters at the production vertex for central Au + Au collisions at 35 AGeV in the
approximated active magnetic field of the CBM experiment [3,4] obtained on the Cell Blade computer.
Table 2
Summarized stages of the porting procedure

Stage Description Time/track Speedup

Initial scalar version 12 ms –
1 Approximation of the magnetic field 240 µs 50
2 Optimization of the algorithm 7.2 µs 35
3 Vectorization 1.6 µs 4.5
4 Porting to SPE 1.1 µs 1.5
5 Parallelization on 16 SPEs (2 Cells) 0.1 µs 10

Final SIMDized version 0.1 µs 120,000

the main memory. Comparing with Table 3 one can see that for
all computers there is a little overhead of about 10% because
of reading data from the main memory. It is also clear that the
hyper-threading of the Intel Xeon processor does not contribute
in this particular case of the fitting procedure, in contrast the
Table 3
Real time performance of the SIMDized version of the Kalman filter based
fitting routine for a single track fitted on three different CPU families

Processing unit Clock, GHz Time/track, µs kCycle/track

Intel Xeon 2.66 1.47 3.91
AMD Opteron 1.8 1.86 3.35
Cell SPE 2.4 0.87 2.09

dual core technology of the AMD Opteron processor shows sta-
bility of the timing performance due to its NUMA architecture.
In the Cell Blade computer all 16 SPEs work completely in-
dependent and in parallel. They have the constant speed of the
algorithm per processing unit up to 11 processes, then slightly
reducing the speed probably due to large data flow through the
element interconnect bus.
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Fig. 7. Fit time per track of the SIMDized version of the Kalman filter based
fitting routine measured in real time for the Intel Xeon, AMD Opteron and Cell
based computers running different number of processes in parallel.

Having significant differences in the architectures and clock
rate all computers have shown similar speed7 of the algorithm
per processing unit. This can be, first, because the final algo-
rithm does not require large memory and most of calculations
are done within the cache or the local store. Second, the al-
gorithm implements the Kalman filter technique in the same
source code which after compilation by a gcc compiler pro-
duces executables with similar performances.

The local store of the SPE requires a special consideration,
but can give more freedom to the developer if comparing with
the cache of Intel or AMD processors. The vector instruction
set of the SSE2 has relatively limited capabilities to operate
with the cache. In contrast, the instruction set of the SPE has
considerable number of instructions for non-blocking transfers
between local store and main memory. In our case, the track fit-
ting algorithm does not require large exchange of data between
the local store and the main memory, therefore this difference
between the processors has not been observed.

The cellular automaton track finder of the CBM exper-
iment has been also significantly reworked in order to be
SIMDized. The SIMDized Kalman filter based fitting routines
have been included into the track finder. First tests of the fully
SIMDized cellular automaton track finder [14] show 1000 times
increase of the reconstruction speed with respect to the ini-
tial scalar version running on the same Pentium 4 based com-
puter.

7. Conclusion

The Kalman filter based track fitting algorithm, the core
algorithm of the event reconstruction software in high en-
ergy physics experiments, has been significantly optimized and
adapted to a vector form implementing different SIMD instruc-

7 It should be noted, that there are processors with higher clock rates avail-
able.
tion sets: SSE2 of the Intel and AMD CPUs, AltiVec of the
PPE and the specialized SIMD instruction set of the SPE of
the Cell processor. Overloading basic scalar operators by corre-
sponding vector instructions keeps the source of the algorithm
unchanged, thus providing the unified approach for all com-
puter architectures under investigation.

The overall speedup in 120 000 times has been obtained on
the Cell Blade computer compared to the initial implementation
on a Pentium 4.
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